Extensions 1→N→G→Q→1 with N=C2 and Q=C22.D8

Direct product G=N×Q with N=C2 and Q=C22.D8
dρLabelID
C2×C22.D864C2xC2^2.D8128,1817


Non-split extensions G=N.Q with N=C2 and Q=C22.D8
extensionφ:Q→Aut NdρLabelID
C2.1(C22.D8) = C23.36D8central extension (φ=1)64C2.1(C2^2.D8)128,555
C2.2(C22.D8) = C23.37D8central extension (φ=1)64C2.2(C2^2.D8)128,584
C2.3(C22.D8) = C23.38D8central extension (φ=1)64C2.3(C2^2.D8)128,606
C2.4(C22.D8) = C2.D84C4central extension (φ=1)128C2.4(C2^2.D8)128,650
C2.5(C22.D8) = D4⋊C4⋊C4central extension (φ=1)64C2.5(C2^2.D8)128,657
C2.6(C22.D8) = C24.83D4central stem extension (φ=1)64C2.6(C2^2.D8)128,765
C2.7(C22.D8) = (C2×C4).24D8central stem extension (φ=1)64C2.7(C2^2.D8)128,803
C2.8(C22.D8) = C23.12D8central stem extension (φ=1)64C2.8(C2^2.D8)128,807
C2.9(C22.D8) = (C2×C8).1Q8central stem extension (φ=1)128C2.9(C2^2.D8)128,815
C2.10(C22.D8) = (C2×C4).27D8central stem extension (φ=1)64C2.10(C2^2.D8)128,825
C2.11(C22.D8) = (C2×C4).28D8central stem extension (φ=1)128C2.11(C2^2.D8)128,831
C2.12(C22.D8) = C22.D16central stem extension (φ=1)64C2.12(C2^2.D8)128,964
C2.13(C22.D8) = C23.49D8central stem extension (φ=1)64C2.13(C2^2.D8)128,965
C2.14(C22.D8) = C23.19D8central stem extension (φ=1)64C2.14(C2^2.D8)128,966
C2.15(C22.D8) = C23.50D8central stem extension (φ=1)64C2.15(C2^2.D8)128,967
C2.16(C22.D8) = C23.51D8central stem extension (φ=1)64C2.16(C2^2.D8)128,968
C2.17(C22.D8) = C23.20D8central stem extension (φ=1)64C2.17(C2^2.D8)128,969

׿
×
𝔽